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Fluorescence, the absorption of short-wavelength electromagnetic
radiation reemitted at longer wavelengths, has been suggested to
play several biological roles in metazoans. This phenomenon is
uncommon in tetrapods, being restricted mostly to parrots and
marine turtles. We report fluorescence in amphibians, in the tree frog
Hypsiboas punctatus, showing that fluorescence in living frogs is
produced by a combination of lymph and glandular emission, with
pigmentary cell filtering in the skin. The chemical origin of fluores-
cence was traced to a class of fluorescent compounds derived from
dihydroisoquinolinone, here named hyloins. We show that fluores-
cence contributes 18−29% of the total emerging light under twilight
and nocturnal scenarios, largely enhancing brightness of the individ-
uals andmatching the sensitivity of night vision in amphibians. These
results introduce an unprecedented source of pigmentation in am-
phibians and highlight the potential relevance of fluorescence in
visual perception in terrestrial environments.

Amphibia | Anura | Hylidae | visual ecology | fluorophore

Fluorescence occurs when short-wavelength electromagnetic
radiation is absorbed and then reemitted at longer wavelength.

This phenomenon is broadly distributed in marine and terrestrial
environments and is found in distantly related organisms (1).
Among aquatic vertebrates, fluorescence is widespread phyloge-
netically within cartilaginous and ray-finned fishes (2) and has
been documented in sea turtles (3), whereas among terrestrial
vertebrates, it is only known to occur in parrots (4). With few
exceptions (5–7), the molecular basis of most of those reports
remains unstudied. Many roles have been suggested for fluores-
cence in animals, such as photoprotection (8), antioxidation (9),
and visual communication (10–14).
Amphibians (frogs, toads, salamanders, newts, and caecilians)

have a wide range of skin coloration (15) caused by an integ-
umental pigmentary system in which the combination of different
types of chromatophore cells create coloration through the in-
tegration of chemical and structural features (16). Although the
chemical nature and distribution of chromophores has been stud-
ied (16), fluorescence has not been reported in any of the 7,600
species of amphibians (17). Here we report a case of fluorescence
in this highly diverse group, introduce a class of fluorescent com-
pounds, and assess its importance by quantifying its contribution to
overall coloration under natural light conditions.

Results and Discussion
Fluorescence in Hypsiboas punctatus. The South American tree frog
H. punctatus (Family Hylidae) is unusual among amphibians in
possessing a translucent skin, a crystal-containing layer in the
peritonea and bladder, and a high concentration of biliverdin in
lymph and tissues. We observed that living adults and juveniles
illuminated with UV-A blue light produced a bright blue/green
fluorescent emission (Fig. 1 A–C) that was clearly discernible from
the body surface of the specimens. To characterize the fluores-
cence of frogs, we recorded excitation-emission matrices from the

dorsum of living adults of both sexes (Fig. 1D). Both spectral
profiles presented excitation maxima of 390−430 nm and emission
maxima at 450−470 nm (blue), with a shoulder at 505−515 nm
(green) giving an overall cyan coloration and showing no evident
sexual dichromatism.

Anatomical Origin of Fluorescence. Because the skin is seemingly
translucent in this species (SI Appendix, Fig. S1A), we evaluated
the contribution of different tissues to fluorescence emission. For
this purpose, we recorded fluorescence spectra of isolated skin with
absorbed lymph (S+L), yellow glandular secretions obtained
through mild electrical stimulation (gl), and three subcutaneous
structures. These included the blue green lymph present in lymph
sacs (L), muscles (M), and a white underlying connective tissue
containing guanine crystals in the dorsal musculature (crystal-
containing layer; Fig. 2A, Upper Left and SI Appendix, Fig. S1B).
All structures showed fluorescence maxima that matched the blue
emission peak of living specimens, but only skin (S+L) samples
showed the characteristic green shoulder of intact animals (Fig. 2A,
Upper Right). Despite the apparent translucency of the skin, light
transmittance at 390−430 nm was less than 10% (Fig. 2A, Lower
Left). A quantitative estimation of the contribution of the different
layers to the fluorescent emission (SI Appendix, Fig. S1B) revealed
that muscles and crystal-containing layer accounted for less than
1% of total emission at 400 nm, indicating that the observed
fluorescence is mainly a result of the emission of the skin with
absorbed lymph (Fig. 2A, Lower Right).
Detailed images of skin using confocal microscopy of transverse

sections revealed that excitation at 405 nm caused emission in the
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430−490-nm bandwidth in the epidermis, dermal connective tissue,
and glands (Fig. 2B, Upper and SI Appendix, Fig. S1C). This is in
stark contrast to other hylid species examined, in which no fluo-
rescence was detected under the same experimental conditions,
and faint fluorescence was only observed from the interface of the
strata spongiosa and compacta of the dermis (pteridine layer) (18)
when laser power was enhanced 15-fold (Fig. 2B, Lower and SI
Appendix, Fig. S1D and Discussion). Skin chromatophores located
immediately below the epidermis in H. punctatus did not show
fluorescence in the blue bandwidth analyzed (Fig. 2B, Upper and SI
Appendix, Fig. S1 C and E and Discussion). As this layer includes
yellow pigments mainly found in xanthophores (16) (SI Appendix,
Fig. S1 F and G), we recorded transmittance spectra from both
intact and lymph-washed skin and assessed its effect on fluores-
cence emission. The resulting filtered glandular fluorescence
spectrum (Fig. 2C, Right and SI Appendix, Figs. S1 I and H)
revealed a clear attenuation and showed a shape that matches that
of living specimens and skin with lymph, with its characteristic
green shoulder (Fig. 2A, Upper Right). Accordingly, glandular
ducts, which are not attenuated by chromatophores, fluoresced more
brightly than adjacent tissue (Fig. 2C, Left).

Chemical Source of Fluorescence. To elucidate the chemical nature
of fluorescence, we extracted and purified water-soluble fluo-
rophores from lymph and skin interstitial tissue, epidermis, and

multicellular exocrine skin glands and analyzed them by HPLC-Ion
Trap-MS, assisted by TOF-MS, MS/MS-based fragmentation, and
1D-2D NMR spectroscopies (SI Appendix, Fig. S2 A and B). We
isolated a major fluorescent compound from lymph with molecular
formula C22H31NO4, as determined by TOF-MS data (molecular
weight accuracy <5 ppm; Fig. 3A, peak H-L1, and SI Appendix, Fig.
S2B). We designated this molecule as Hyloin-L1. The Hyloin-L1
fluorescence profile (Fig. 3B) closely matched the blue emission
maximum of lymph, skin, and living specimens (Fig. 2A, Upper Right
and SI Appendix, Fig. S2C) and exhibited solvatochromicity (Fig.
3B). Combined 1D and 2D NMR experiments allowed a full
structural elucidation, revealing an N-methyl-dihydroisoquinolinone
core, with an unsaturated C11 fatty acid and a methoxy group as
substituents of the aromatic ring (Fig. 3C and SI Appendix, Figs. S3
and S4). A minor, related compound with molecular formula
C22H29NO4, Hyloin-L2, was also isolated (Figs. 3A, peak H-L2, and
3C and SI Appendix, Figs. S2 A and B and S5) and exhibits the same
fluorescence profile (SI Appendix, Fig. S5D) as Hyloin-L1. The
identification of additional hyloin analogs was assisted with molec-
ular networking (19), which grouped related parent ions in different
clusters based on similarities in MS/MS fragmentation patterns. The
resulting clusters allowed the identification of compounds of the
homologous series based on systematic fragmentation studies con-
sidering the MS/MS spectra of the isolated hyloins (Fig. 3D and SI
Appendix, Figs. S5D, S6A, S7, and S8). Several variants involving
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Fig. 1. Fluorescence in the tree frog H. punctatus. (A) Adult male under UV-blue light (400 nm; Upper) and white light (Lower). (B) Fluorescence of dorsum
(Left) and venter (Right) of a male. (C) Female under UV blue light excitation (400 nm) and long-pass emission filters (Left: 435 nm; Middle: 516 nm), or under
white light and no emission filter (Right). (D) Normalized representative excitation-emission matrices of the dorsal surfaces of female (Left) and male (Right)
specimens. Maximum emission signal was detected at 460−470 nm with a shoulder at 510 nm and corresponded to an excitation maximum of 390−430 nm.
Photos in B were taken with a band-pass excitation filter attached to the flash and a long-pass emission filter (516 nm) attached to the lens.
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different lengths (10–12) and degrees of unsaturation (0−2) of the
side chain (Fig. 3D) were detected in crude lymph and epidermal
samples (SI Appendix, Fig. S2 A and B). Analyses of glandular se-
cretions revealed the presence of the compounds extracted from
lymph, but as amide derivatives with the amine agmatine (Hyloin-
G1, for glandular; Fig. 3D and SI Appendix, Figs. S2B, S6A, and S9).
Glandular secretions from other hylid species did not include the
novel compounds described as indicated from molecular network
results (SI Appendix, Fig. S6B), and no UV-A absorbing molecules
were detected under the same HPLC-diode array detector condi-
tions used to analyze H. punctatus secretions (Fig. 3E and SI Ap-
pendix, Fig. S6C). Electronic structure calculations suggest that an
intramolecular interaction accounts for a very polar structure,
consistent with the observed high aqueous solubility of these new
molecules (SI Appendix, Fig. S10 and Discussion).

Fluorescence and Total Emerging Light. The biological relevance of
fluorescence in H. punctatus from a visual ecology perspective
depends on the quantitative contribution of fluoresced photons to
the total emerging light (fluoresced + reflected photons). Two
factors would increase this contribution: a large fluoresced photon

flux that depends on the quantum yield (Φf) of the frog, and a low
reflected photon flux in the spectral range that matches fluores-
cence emission, which depends on reflectance properties of the
skin. Furthermore, these two factors also depend on the envi-
ronmental light availability, which increases the fluorescence when
there is a sufficiently large ratio between ambient light irradiance
in the spectral excitation and emission ranges of the fluorophores
present in the tree frog. We empirically determined a Φf value of
0.12 ± 0.03 at 400 nm and developed a methodology to quantify
fluorescence emission at other excitation wavelengths (SI Appendix,
Fig. S11A andB). The reflectance ofH. punctatus for the 420−550-nm
range (where most fluorescent photons are emitted; Fig. 1D)
is relatively low (less than 8% in the blue part of the spectrum;
Fig. 4A). As H. punctatus is a crepuscular and nocturnal species
(20), we estimated the contribution of fluorescence to the total
emerging light under twilight, moonlight, and moonless night
irradiances (21). Given our results and the ambient irradiance
distribution, our calculations show that fluorescence contributes
from 18.5 ± 2.6% in a full moon night to 29.6 ± 3.2% during
twilight (Fig. 4B and SI Appendix, Fig. S11C).
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Fig. 2. Anatomy of fluorescence in H. punctatus. (A) Fluorescence is observed in the skin and isolated subcutaneous structures. Incident excitation light and
fluorescence emission from each tissue layer are attenuated by the structures above and depend on the transmittance of each layer (Lower Left). Fluorescence
from subcutaneous structures is almost completely filtered by skin with lymph (Lower Right). (B) Transverse sections of dorsal skin of H. punctatus and Scinax
nasicus. (Left) Confocal images of fresh samples using a 405-nm laser line. (Right) Stained histological section of H. punctatus and unstained sections of
S. nasicus superimposed to confocal image. Fluorescence emission in H. punctatus is observed from epidermis (e), dermis (d), and glands (gl), whereas in
S. nasicus, it is restricted to the pteridine layer (pl) of the dermis. No fluorescence is detected from chromatophores (ch). (Scale bar, 50 μm.) (C) Chromatophores lie
immediately beneath epidermis, as seen in the semithin skin section (Lower). (Scale bar, 20 μm.) They impart coloration to skin (Upper, stereomicroscope image of
living specimen) (Scale bar, 150 μm.) Fluorescence emission from glands and dermis is filtered by the chromatophores, and hence fluorescence intensity is at-
tenuated mainly in the blue region. A green shoulder is observed in the filtered emission, as in living frogs. Chromatophore attenuation is evident, as un-
attenuated glandular ducts (gl d) fluoresce more brightly than the rest of the gland (gl; Middle) (Scale bar, 150 μm.)
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Fluorescence and Visual Perception in Terrestrial Environments. Even
though the visual system of H. punctatus has not been studied, two
retinal rod classes involved in nocturnal scotopic vision (under
low-light conditions) have been identified in several amphibian
species and studied thoroughly in the Green tree frog Hyla cinerea
(22). The close match between scotopic spectral sensitivity in this
species (maxima at 435 nm and at 503 nm) and fluorescence
emission spectra in H. punctatus indicates that fluorescence could
contribute to the visual perception of individuals, enhancing
brightness by converting irradiance from the UV-blue portion of
the spectrum, where visual sensitivity is low, to longer wavelength
emission, where sensitivity is higher. This information suggests
that fluorescence is a component of the pigmentary system in
H. punctatus, constituting a novel extrachromatophore source of
coloration. Quantitative estimations of fluorescence contribution
to total emerging light in other fluorescent organisms under nat-
ural irradiances are limited to marine organisms (23), in which
spectral distribution of the ambient illumination is nearly mono-
chromatic. Although fluorescence has been suggested to be irrel-
evant in terrestrial environments (24), our quantitative results are
striking, in that they show that fluorescence could be an important
component of total emerging light in the chromatically more
complex terrestrial environments as well.
A survey indicates that seven anuran amphibian families

(Arthroleptidae, Centrolenidae, Hemiphractidae, Hylidae, Hyper-
oliidae, Mantellidae, Rhacophoridae) include at least some species
having similar characteristics to H. punctatus (translucent skin, a
crystal-containing layer in the peritonea and urinary bladder, and a
high concentration of biliverdin in lymph and tissues) and should be
tested for fluorescence (SI Appendix, Discussion). Our report of fluo-
rescence in H. punctatus and its role in frog coloration raises an ex-
citing perspective on the study of the molecular origin, evolution, and
relevance of fluorescence in amphibian visual perception and biology.

Materials and Methods
Adult specimens of the tree frog H. punctatus were collected at night in the
outskirts of the city of Santa Fe, Santa Fe, Argentina. Other species included in
different parts of this study were Aplastodiscus leucopygius, Aplastodiscus
perviridis, Hypsiboas prasinus, Hypsiboas raniceps, and Scinax nasicus. Collec-
tion permits were issued by Secretaria de Medio Ambiente, Ministerio de
Aguas, Servicios Públicos y Medio Ambiente, Province of Santa Fe, Argentina
(021-2011 and 063-2013), Ministerio de Ecología, Province of Misiones,
Argentina (010-2015), and Instituto Chico Mendes de Conservação da Bio-
diversidade/SISBIO (Permit 50071-1). All procedures involving animals were
carried out according to the regulations specified by the Institutional Animal
Care and Use Committee of the Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires (Res C/D 140/00), and those specified by Conselho
Nacional de Controle de Experimentação Animal, Ministério da Ciência, Tec-
nologia e Inovação, Brazil.

The fluorescent compounds were isolated and purified from lymph and
dermal glands, using published chromatographic methods. Chemical charac-
terization was performed by NMR, mass spectrometry, and electronic structure
calculations. Fluorescence measurements were performed using a steady-state
spectrofluorometer (QuantaMaster; Photon Technology International) on
specimens of H. punctatus held immobilized, and on specific dissected tissues
and glandular secretions. Diffuse reflectance and transmittance measurements
were performed by means of a spectrophotometer (UV3101PC; Shimadzu)
equipped with an integrating sphere (ISR-3100; Shimadzu). The fluorescence
quantum yield (Φf) of intact adult specimens was estimated using a published
methodology. Fluorescence influence on total emerging light under two
nocturnal and one twilight scenarios were taken into account using published
irradiance data (21). See SI Appendix for a full description of methods.
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Fig. 4. Contribution of fluoresced photons to total emerging light in
H. punctatus. (A) Reflectance spectra of the dorsal surface of six specimens.
(B) Spectral photon flux (photons/cm2/s/nm) emerging from the dorsal surfaces of
one of the specimens under three different natural illuminants. Reflected light (solid
line; reflectance × irradiance for every λ), fluoresced light (dotted line; calculated
with the empirical quantum yield and the methodology described in SI Appendix),
and the sum of both components (dashed line) show a large contribution of
fluorescence to the total amount of photons for all the analyzed scenarios. Maxi-
mum contribution corresponds to the blue/green range (420−550 nm).
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